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curves ending abruptly. Since all computations are performed on a discrete grid, quantization and round-

ing errors restrict the selectivity and amount of clutter the system can handle.

It is possible to base much of the reasoning of the voting and interpretation on a firmer statistical

footing. In a recent work, Williams and Jacobs [29] have done just that. We opted for a more intuitive way

to derive the theory.
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eccentricity measure at each site. Table 2 summarizes the main differences and similarities of the two

methods.

7 Summary and Conclusion

We have introduced a unified way to extract perceptual features in edge images. By ‘unified’ we

mean that all low-level features (edgels, points) are treated in a uniform way, and no special cases exist.

The scheme is threshold-free and non-iterative. It is especially suitable for parallel implementation, since

computations of the saliency maps are independent for each site, and parallel algorithms for line following

are known and can easily be adapted. Also, calculations are simple and stable, as no curvatures or any

other derivatives need to be computed on the digital curves.

The system can rank features based on their perceptual importance. This allows a real-time appli-

cation to process as many features as time permits.

Some of the issues which have not been addressed are the resolution dependency of the description.

At this time, only one level of description is possible. Also, we have not tried to localize end-points of

a. Our nomenclature. Refer to text for definition.
b. Or at least one dimension less that of the problem.

Table 2: Comparison between the Hough Transform and Our Scheme

Our scheme Hough Transform

Complexity Same for all shapes and proper-
ties

Grows with the number of parameters

Space Requirements Constant (O( image size)) Grows with the number of parameters
and resolution.

Properties (Families of
shapes) coding

Yes, by defining suitable fields Not in any obvious way

Analytical shapes Yes, by the same method Yes

Voting patterna 2-D 1-Db

Localization of shape Yes Not always. Further processing is need-
ed to find location

Means of output A ridge of maxima A peak in parameter space

Choice of bin size Always image resolution Hard (May be crucial)

Selectivity Low (Because of compaction) High

Transformation Non-Linear Linear
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For more complex shapes, the scheme can be generalized by increasing the dimensionality of the

accumulator space. For instance, circle detection requires 3 dimensions (2 for the center, 1 for the radius).

The next phase in the process is to search for peaks in the parameter space array. The desired fea-

ture is only defined in terms of the above parameters and further processing is needed to localize the actual

segment in the image plane. Note that this process is absolutely global, as it ignores distances between

contributing candidates. If some orientation data is known at a site, fewer candidates gather votes, and the

ability to reveal the desired shape gets better.

The same scheme can be extended for other shapes [2] by extending the parameter space.

6.2 Our scheme as a Hough transform

Our system can be viewed as a Hough Transform where the parameter space is the image plane

itself. This allows for many more degrees of freedom in the choice of shapes, and in the basic definition

of the desired shapes. This choice of the parameter space allows us to define other voting patterns1 which

enable us to encode the constraints (see 2.1.1).

Our scheme is thus capable of finding shapes described by their properties (smoothness etc.) rather

than by their exact analytical parameters (as in the Hough Transform).

Note that the classical Hough transform for edgels can be implemented in our scheme. We replace

the Extension Field by a straight line, and remove the attenuation factors. For non-oriented inputs, the

Point field (again without the attenuation) will behave in the desired fashion. Also, note that if our voting

method is kept, we can detect junctions at the same time.

To implement a circle finder using our scheme, we would use our Extension Field, but with all field

strengths set to the value 1. Coding of the other constraints2 is where the strengths of the individual field

elements come into play. This is not possible with the original Hough Transform.

The down side is that the result is not found at an isolated peak of the parameter space, but rather

as a continuous ridge of peaks (in the case of the Extension Field). Also, note that the parameter field we

use is always the image plane, which, in many cases, is smaller than a classical Hough parameter space.

This ‘Compaction’ of data is the cause for the low selectivity compared to Hough transforms.

However, for Perceptual Grouping, this loss of selectivity seems to be an advantage. Note that the

Hough Transform could find clusters(e.g. straight lines) even when they are not salient, because the notion

of interfering features is not made explicit. This makes the Hough Transform a linear superposition. Our

scheme, on the other hand, is highly non-linear and takes into account the interference by computing the

1. Similar to the sinusoid defined for the straight line detector
2. that make it a perceptually appealing scheme
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in Figure 23. This kind of field will vote strongly for straight angle T-junctions, and weakly for other di-

rections. This merely means that more support is needed for more acute angles.

5.4 Experimenting with the End-Point field

We tested the end-point field with the synthetic image in Figure 20. It is clear that the outer circle

receives relatively low saliency, and can be completely removed if we consider single votes in the plane

as wrong hypotheses (see Figure 24).

6 Comparison With the Hough Transform
It is interesting to contrast our scheme with the familiar Hough transform. In the next sub-sections

we show, that in a sense,

6.1 The classical Hough transform

Consider he classical Hough transform [6,11] which can detect co-linear clusters in a dot image in

the presence of noise. This is accomplished by detecting peaks in an accumulator array. If the line is pa-

rameterized in terms of (θ,d), each point votes in θ,d space for a sinusoid with equal weights. The votes

in each cell are scalar, and the accumulation is simply a sum. This scheme is trivially extended to oriented

edges, in which case, each edgel votes for a cell.

Figure 23 A multi-directional edge constructor for the End-Point Field. (envelope shown)

αeiαsin

Figure 24 Results of applying the end-point field. Note that the outer circle is not highlighted!
(a) Original image. (b) Saliency map. (c) after thresholding single votes.

(a)
(b) (c)
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The same result holds for the 3-D case, since the distribution of the projection (either orthographic

or perspective) of any line to 2-D is equal to the marginal distribution of the original 3-D distribution.

That is, uniformly distributed segments in space project to uniformly distributed segments in the plane.

Piecewise smooth curved objects can be approximated by linear segments to any degree of accura-

cy, and should thus satisfy the same distribution. The same is true for lines of different lengths. It is easy

to see that the length of the segment does not change the probability of a given intersection angle.

5.2 Convex T-junctions are more common

We believe that the a priori probability of having convex T-junctions is larger than concave T-junc-

tions. This observation can be illustrated through a simple example, as shown in Figure 22. Figure 22(a)

depicts a physically valid interpretation of the Kanizsa square, but one that is rarely perceived. We believe

the reason is that such an arrangement of circular disks and a square gives rise to concave T-junctions.

Figure 22(b) however, gives the more commonly perceived arrangement.

Figure 24(a) is another example where the inner circle is perceived, but the outer one is not. Again,

we claim this is because concave T-junctions are not normally hypothesized.

Many other experiments (such as in [3]) indicate that end-point formations that require concave T-

junctions are not normally perceived. Also, real objects tend to have longer convex boundaries, than con-

cave ones (see [13]), and since boundary length is proportional to the probability of an intersection, con-

vex T-junctions are more common. The above observation provides an additional constraint when

designing an End-point field, as shown next.

5.3 Building the End-Point Field

The angle distribution derived previously suggests convolving our original Extension field with a

multi-directional edge having a diameter function of a sinusoid, as was done for the point field, and shown

Figure 22 Convex and concave T-junctions. The Kanizsa square has two valid 3-D
interpretations, but only one of them is perceived (b). The other one in (a) requires
us to imagine concave T-junctions.

(a) (b)

concave

convex
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5.1 Straight angles in T-Junctions are more likely than any other

We derive the distribution of T-junction angles in a random world and show that close-to-straight

T-junction angles are more likely to appear than any other angle. We claim that our human perception uses

this property, and thus attempts to perform perceptual tasks on end-points stimuli only when the illusory

intersection angles justify it. In Figure 20(a) all lines meet the illusory contour with almost straight angles,

thus making the shape ‘visible’. In Figure 20(b) the lines are occluded by an exact circle, but the angles

are much more acute. No perception of shape is evident, even though the end-points trace an exact circle.

Claim: Given two unit size segments, we independently drop each one of them on a finite board,

with uniform probability with respect to position and angle. We then look at the distribution of the inter-

section angles between the two segments. We claim that angles close to 90 degrees are more likely to ap-

pear then acute intersection angles. (We do not count cases where the segments do not intersect.)

Proof: Without loss of generality we assume that the first segment lies at the origin of the plane.

Since all positions in the plane have equal probability, the probability of intersection is proportional to the

area of the locus of positions allowing intersection for a certain angle. This is obviously a parallelepiped,

as shown in Figure 21. The area of this parallelepiped is proportional to sinα for α between 0 and 90 de-

grees. We can thus write the distribution function of intersection angles as:

Clearly, angles close to 90 degrees are more probable. ❑

Adding more lines to the system will not change the distribution of angles, since we can consider

all segments to be pair-wise independent.

Figure 21 Given two segments A and B, the grey area is proportional to the probability that A
and B intersect for a certain angle α.

α

The locus of all
center points such
that A intersects
with B.

A

B

Center point of A
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4.6 Complexity Issues

A naive way to implement the algorithm requires  operations, where n is the side size of

the image, and k is the number of edge elements in the input image. In practice, the local density of edgels

restricts the useful scope of the field. Alternatively, instead of computing a dense saliency map, we can

compute the saliency of existing edgels only. Here we assume the existing edgels are stored in some con-

densed array, so that traversal of the whole image is not necessary. This results in complexity of ,

and can be useful as a focus of attention map. This mode allows then for a second pass on the salient fea-

tures only.

5 Application of scheme to end points (End-point field)

In many cases, we tend to interpret end-points as being a partially occluded line. If enough end-

points are available, they support the hypothesis of a shape occluding a collection of lines. This is a well

documented phenomenon, and has been partially implemented by Heitger and von der Heydt [9], in the

case where end-points are already marked. Illusory edges appear to outline the said occluding shape. Fig-

ure 20 illustrates end-point scenarios.

Figure 19 Local maxima of the saliency maps, for different noise levels.

2% noise 4% noise 6% noise Original with 6% noise

O n2k( )

O k2( )

(a) (b)
Figure 20 An end-point formation. (a) A center egg-like shape is not only perceived but also

looks whiter (after [3]). (b) An invisible circle occludes lines. No sensation of a
circle is evident. (c) The inner circle is perceived, but the outer one is not!

(c)
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4.5.2  Point Field

We tested our system on the image in figure 18(a). Initially, the system was run using the Point

field. This resulted in a saliency map with orientation data. A second phase of computation was then per-

formed, using the directional Extension field (Figure 6). That stage produced the final saliency map as

shown in figure 18(b).

4.5.3  Noise Breakdown Point

Our algorithm degrades gracefully and fails in noise, unlike the Hough transform, for example,

which may find line formations even in a very cluttered image, where such formations are not visible, and

could be a result of accidental alignments.

We have performed a controlled experiment to determine the amount of random noise which still

allows for a correct following of a curve, given a constant factor of existing edge. The test is whether all

points along the perceptual circle belong to the local maxima, as defined before. Only uniform noise in

space and orientation was applied to the original image. The circle has a radius of 25 pixels and consists

of 33 segments of unit strength and the percentages of noise applied are 2,4, and 6 percent1, again of unit

strength. This means that about a quarter of the circle edge exists. The local maxima of the corresponding

saliency maps are shown in Figure 19. Up to 4 percent of noise, the circle (or large parts of it) is recov-

erable. With 5 percent noise and more, the saliency map degrades, and it is no longer possible to apply

the following algorithm. The original image with 6% of noise is also given in Figure 19.

1. that is, each pixel has a 0.06 probability of becoming an erroneous site.

Figure 18 (a) A non-directional input image. (b) Saliency map, after applying the Point field
and the directional extension field

(a) (b)
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tropic and cannot affect the direction of true votes in any area. It can be seen that close-by areas get low

agreement values (Figure 15(a)), and far away areas get low voting weight(Figure 15(b)). In both cases,

the interference is small. This is true for all smooth curves in the image.

Noise Contamination Random segments do contaminate the environment, and their effect is re-

duced through the robustness of the voting scheme. In the experimental results section, we empirically test

for allowable levels of noise.

4.5 Results

4.5.1  On Synthetic Images
We have tested our approach with the synthetic data shown earlier in Figure 1.The saliency map

produced is shown (strength only) as a grey-level image in figure 16 and the result of following the path

of highest saliency produces a “clean” circle. Figure 16 also shows the result of the same procedure for

the other scenes. Figure 17 shows an example of the steps involved in producing a high-level description

of a given image, using the junction map in conjunction with the saliency map.

Figure 16 The Raw Saliency maps of images in figure 1.
(a) (b) (c)

Figure 17 Extracting the most salient features. (a) Largest eigenvalue strength map. (b)
Eccentricity enhanced map. (c) Junction saliency map, and (d) linking.

(a) (b) (c) (d)
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4.4.2  The Non-maximum Suppression Phenomena

We have mentioned the superior selectivity of the Enhanced Saliency map. To illustrate this behav-

ior, we look at the eccentricity only map of a straight line (Figure 15(a)). Note how low the eccentricity

is close to where the real line passes. In Figure 15(b) we see the raw saliency map of the same line. The

Enhanced Saliency map is simply the product of the two maps, point by point, and will sharpen the edges

of the correct curves, thus creating a non-maximum suppression affect(Figure 15(c)). Similar maps for a

perfect circle are depicted in Figure 15(d-f).

The low eccentricity in the vicinity of the correct curve is due to the large variance of votes in these

areas.

It may look at first sight that the field, while voting for the correct curve, contaminates the environ-

ment by voting for many other sites in the image. This can be regarded as noise, and is inherent to the

process. However, while the fields voting for a curve agree along the curve, they disagree in any other

area of the image. This means that the contribution of a complete curve to the environment is almost iso-

Figure 15 (a) Eccentricity only map of a saliency map of a straight line. (b) raw saliency map.
(c) Product of (a) and (b). (d) -(f) same for a perfect circle.

(d) (e)

(a) (b) (c)

(f)

line

circle
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The product of our new eccentricity measure and the raw saliency measure λmax yields the junction

saliency operator:

(4.9)

This process creates a Junction Saliency map. Interestingly enough, this map evaluates to just

 at every site (as shown in (4.9)), which simply means that the largest non-eccentric sites are good

candidates for junctions. By finding all local maxima of the junction map we localize junctions (see results

in Figure 17).

Knowledge of the location of junctions is crucial in the linking phase of any edge detection scheme.

As we show in the results, linking can be performed by following curves from one junction to the next.

4.4 Properties of the extension field

4.4.1  A longer line implies a stronger and more directed field, but up to a point

Using a simple example, we demonstrate the behavior of the field when extending a straight line.

Figure 14 shows a cross-section of a saliency map computed on a series of straight lines with increasing

lengths. Clearly, the saliency grows as a function of the length, and the map becomes more directed (thin-

ner ridge). Also, saliency converges to some finite value which is just the infinite integral along the main

axis (x -axis in Figure 6) of the Extension Field. This can be explained intuitively by noting that the in-

fluence of a given edge segment decreases monotonically with distance, so a given site can only gather

votes up to a certain “influence radius”. This observation can be used to estimate absolute saliency, since

the maximum saliency value we expect (for a ‘clean’ input) is known. The maximum saliency will change

according to the curvature of the curve, as the constraints dictate.

E λmax⋅ λmin λmax⁄( ) λmax⋅ λmin= =

λmin

Sa
lie

nc
y

Length of segment
5 5535

Figure 14 Saliency of a line does not grow forever. It converges to some value which is the
infinite straight integral of the extension field.
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Our intuitive notion of ‘agreement’, or of a majority vote on a continuous scale, is consistent with

the above definition. This means that in all cases where we feel that collection A has better ‘agreement’

than collection B, the corresponding eccentricity values will share the same relationship (i.e. E(A)>E(B)).

This is not to say that both functions are equal, but merely that both are monotonic.

Eccentricity values by themselves cannot perform as saliency measures since sites with very little

voting strength can produce high eccentricity values. In fact, consider a site far away from where the ‘ac-

tion’ is, which accepts exactly one vote (This can happen in practice). The eccentricity value is 1, but the

site is of no importance.

However, Consider λmax itself. Obviously,

(4.6)

By (4.6) λmax is bounded from both sides by the proximity measure in (4.5) and has the eccentricity

coded into it. When the value leans towards the left side of (4.6), eccentricity is low and vice-versa.

Thus, λmax is chosen as the raw saliency measure in our scheme.

This choice however, may still amplify locations which are very strong in terms of number of votes,

but weak in eccentricity1. The product of E and λmax produces the desired result, termed the enhanced

saliency measure SM, or:

(4.7)

Thus, λmax-λmin is chosen as the enhanced saliency measure.

It is important to note that other functions of the eigenvalues can also satisfy the same conditions

of monotonicity, but the ones chosen seem to be the simplest possible indicators of the desired behavior.

Detection of Junctions
A junction is defined as a salient point having a low eccentricity value.

Regular (non-junction) points along a curve are expected to have high eccentricity values. On the

other hand, junction points are expected to have low eccentricity, since votes were accumulated from sev-

eral different directions. By combining the eccentricity and the eigenvalue at a point, we acquire a con-

tinuous measure of the likelihood of that site being a junction. We redefine our previous definition of

eccentricity slightly, so that low eccentricity scores high, or:

(4.8)

1. For example, accumulation points and junctions! (where )

λmin λmax+

2
---------------------------- λmax λmin λmax+≤ ≤

λmin λmax≅

SM λmax 1 λ– min λmax⁄( )⋅ λmax λmin–= =

E λmin λmax⁄=( ) 0 E 1≤≤⇒
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This number, however, does not take into account the agreement between votes. A curve is salient

if many votes (high λmax) are collected, and their orientation is consistent (low λmin). The eccentricity

 is therefore a good measure of agreement.

When that value is multiplied by the previous raw saliency measure we achieve better selectivity,

and only curves are highlighted. This results in a map defined by .

Justification What we are looking for is a function that accepts positive vectors as input and re-

sults in a measure of the agreement in their orientation. The result should satisfy several criteria:

• We want the result to be normalized, so that we can compare different sites on a standard scale.

• The measure needs to be monotonically increasing with the addition of positive contributions.

• It should give higher values to ‘better’ (more directed) spatial arrangements of vectors.

• We want the effect of proximity to be independent to the effect of agreement.

It is easy to show how the model behaves when a single vector is added to it. Assume the variance-

covariance matrix is as follows at state t:

(4.2)

The sum of the eigenvalues is the trace of the matrix:

(4.3)

Now adding a new vector  to the system will result in a new state t+1:

(4.4)

Note that the angle θ has disappeared on the r.h.s. of (4.4). This means that the sum of eigenvalues

is independent of the orientations of the voting vectors and can hence be used as an indicator of proximity

(a wider sense of proximity of course), and as a naive saliency measure.

Equation (4.4) can be written as:

(4.5)

Where N is the number of segments in the original image.

We define the eccentricity  as a measure of agreement. This value is between

0 and, Since , and are both non-negative.

1 λmin λmax⁄( )–

λmax λmin–
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The output of the directional convolution, O(i,j), is in the form of a variance-covariance matrix for

each point in space (see the next section for justification),

We are now ready to define the directional convolution operator  of a vector field EF

with an input field I,

where  and . This will define all elements in O(x,y).

When the input is a scalar field, the rotation operator becomes the identity operator and has no ef-

fect.

In order to obtain a majority vote regarding the preferred orientation of a given position, we treat

the contributions to a site as being vector weights, and compute moments of the resulting system. Such a

physical model behaves in the desired way, giving both the preferred direction and some measure of the

agreement. We use the direction of the principal axis ( ) of that physical model as the chosen ori-

entation (See equation (4.1)).

(4.1)

This acts as an approximation to the desired majority vote, without the need to consider the indi-

vidual votes, but rather the statistics of the set.

4.3 Vote interpretation
At each pixel location, we now have the result of a vector vote in the form of an ellipse (λmin, λmax,

θ). This information needs to be interpreted.

Clearly, λmax is the raw saliency measure as it relates to the number of votes collected.

O i j,( ) mu v,
i j, m20

i j,
m11

i j,

m11
i j,

m02
i j,

= =

EF I⊕ O=

muv
x y,

Ii j,
2

i
∑ R

Ii j,
Ti j, EF⋅ ⋅ 

 
x

x y, u
⋅

j
∑ R

Ii j,
Ti j, EF⋅ ⋅ 

 
y

x y, v
⋅=

0 u v, 1≤ ≤ u v+ 1=

EVmin

m20 m11

m11 m02

EVmin

EVmax

λmin 0

0 λmax
EVminT EVmaxT=

Principal Axis

Figure 13 The principal axis of the votes collected at a site is taken as an approximation of
the preferred direction.

Image
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For R, we first define a rotation matrix (Ma,b), that brings the unit vector {0,1}T to any given unit

vector {a,b}T. Such a matrix always exists, but may not be unique. This presents no problem, since all our

fields are symmetric around the x-axis, and as such are invariant to the specific rotation. Thus, for R we

get,

Note that for the rotation operator, first the coordinate system has to be transformed, and then the

actual vector at that point in space needs to be rotated.

Figure 12 Superposition of two Extension Fields over a scenario of two co-circular short
segments (dark lines).

Ra b, V i j,( )⋅ Ma b, V Ma b, i j,{ } T⋅( )⋅=
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The next step is to represent these accumulated vector votes at each pixel in a convenient and mean-

ingful way. We argue that the relevant information is computed simply by the distribution of these votes,

and specifically well approximated by the best fit ellipse representing the moments of these votes. We give

the mathematical details below.

4.2 Vote representation
The strength of the field is scaled by a measure of the contrast of the segment, so that stronger seg-

ments have stronger votes throughout the space.

Note that, although the process is local in essence, the fields impose some global order, and one line

segment can implicitly 'vote' for a large curve without any explicit global reasoning involved.

As before, we define the Extension Field, EF(i,j) at any site(i,j), to be a vector field:

The input I, will be denoted with a bar when oriented (a vector field), and without when non-ori-

ented (a scalar field).

We define the translation (T) and rotation (R) operators to translate and rotate an arbitrary vector

field (V) respectively. For T we have,

which simply translates the indices of the target vector field.

Figure 11 Superposition of two Extension Fields over a scenario of two co-linear short
segments (dark lines).

EF i j,( ) EFx EFy,( ) T=

T∆x ∆y, V i j,( )⋅ V i ∆x+ j ∆y+,( )=
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is constructed from a degenerated instance of an ellipse (a line), while the Point field is created from a

‘circular’ edge point. This makes full use of our input model and allows treatment of mixed images1 in a

consistent and unified way (see Figure 10).

In practice, in was found that the Extension field, although designed for perfect orientations, toler-

ates some degree of uncertainty in the input samples. This is due to the special interpretation of the votes,

which is described later.

4 Computation of the Saliency Map

4.1 Vote Accumulation

Having designed the field for a given input site (from a dot to an edgel) we superpose these votes

from each active site at each location. A pixel receives a vote from all sites whose field overlap this pixel,

and each vote has the form of a vector, given by its strength (length) and orientation.

For each voting site, we align the appropriate extension field with the direction of the site, center

the field at the site, and compute the vector contribution at each location covered by the field. The is re-

peated for all input sites. This process is similar to a convolution with a mask, except that the output is a

vector instead of scalar. The procedure is illustrated in Figures 11 and 12.

1. i.e. having varying certainty measures (or a mixture of dots and lines)

Figure 9 (a) A typical dot formation. (b) A multi-directional edge and the resulting point
field.(c)

(a) (b) (c)

Figure 10 A continuum of field constructors. From the maximum certainty in orientation
(left), to maximum uncertainty (right).
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eral correspond to any analytical function. For practical reasons, however, we have decided to ‘guess’ an

approximating analytical function to the Extension Field (EF) (equation 3.2).

(3.2)

The parameter A controls the proximity decay, while B controls the decay due to higher curvature.

The parameters A and B were selected empirically based on the above-mentioned constraint. They are not

however, independent, and changing one will require to change the other. The shape is thus that of a de-

caying exponential, where the decay is a function of both the distance and the radius of the corresponding

circular arc. The parameter A is related to the size of gaps we are able to recover, and should be derived

from image size and sparseness of data. In our implementation, A was selected to bridge gaps of up to 50

pixels (A=0.003), and B was adjusted to loosely satisfy the above-mentioned constraint (B=2.85).

Note that the values of A and B need to be tuned only once during the design of the field, and are

kept constant through all our experiments.

3.2 Other fields

3.2.1  The Point Field
A dot image is a degenerate case of an edge image, where the edges have no direction. Such max-

imum orientation uncertainty in the input fits our input model well, and allows us to handle such cases in

a uniform way. Obviously, perception is weakened by the loss of orientation data, and we are only able to

handle cases with a moderate amount of noise. The only applicable perceptual law is that of proximity.

A suitable field must have circular symmetry, and in practice is constructed by convolving our orig-

inal extension field with a ‘multi-directional’ edge segment (Figure 9). A typical input is shown in Figure

9, where a broken sine wave and a set of random points on a circle are embedded in noise.

Another scenario where the point field could be useful is in images where co-curvilinear formations

between features other than dots are present. In such cases we would like to treat the image as if it was

made out of non-directional tokens (or dots), and apply the point field to it.

3.2.2  Unifying the field concept

We unify the maximum certainty (Extension) field and the Point field (and all fields in between) by

considering a continuum of eccentricities associated with the multi-directional edge. The Extension field
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low the main diagonals. This merely means that we choose not to vote for pixels in that area, and

additional ‘in-between’ information is necessary to reconstruct curves between such pairs.

Another reason all values beyond the two main diagonals are zeros, is a technical one. Having a

segment vote for a point in space which is more than 90 degrees away (along a circular arc) could poten-

tially cause unrelated segments to vote for the same curve, even though such a curve should not connect

them.

Strength The main consideration here is that we would like a decay due to distance and a a decay

due the higher curvature. Many functions can fulfill this, and the problem is under-constrained. We add

the following constraint. The best way to determine these values is by considering an intentionally am-

biguous or undecidable case. The assignment of actual probabilities to the field is thus performed as fol-

lows: We consider two short edge segments, perpendicular to each other and apart1 (see center of

Figure 8). This scenario, we claim, is a middle point between a clear choice of a connection by a sharp

junction and a connection by a smooth curve. We regard this to be a most competitive scenario in terms

of grouping of the two line segments. We thus assign probabilities to the field elements in such a way that

all paths connecting these segments are assigned roughly the same saliency, and there does not exist any

single best path between the two. More precisely, we set the field element strengths such that all values

within the marked triangular region are the same. Such a scenario, when repeated for all distances, re-

moves all but one degree of freedom as to the choice of values for the field. The weights will not in gen-

1. This scenario is termed ‘the maximum undecidability arrangement’.

Figure 8 5 arrangements of two segments, each with a different separation angle.
 Angles much smaller than 90 degrees suggest a corner, while angles much larger
than 90 degrees suggest a smooth connection.

maximum undecidability

20o 35o 90o
130o 170o
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tween compatible edgels before. The circular vote here is somewhat different, since the field is not de-

signed to evaluate pair-wise compatibility, but rather to ‘suggest’ plausible continuations everywhere in

space.

In trying to computationally evaluate the various constraints over a given curve we find that a

(somewhat revised1) measure of Total Curvature (as used by [22]) encompasses most of the desired con-

straints. We define the Total Curvature (TC) to be:

(3.1)

This is the integral of the curvature (brought to some power) along the curve, where θ is the tangent

along the curve γ. The variable α is traditionally taken to be equal to 2, but it can be shown that the choice

of a circle as the connecting curve in the scenario shown in Figure 7 minimizes the TC for all values of

α greater than 2 [8]. A larger α would just penalize sharp turns more than a smaller one. We thus set the

orientations of the field elements to be tangent to a circular arc connecting the origin and that point in

space.

It is important to note that two oriented points cannot always be joined by a circular arc. Such pairs

may be subject to some more complicated smooth curve connection, but we have decided not to handle

explicitly these cases. It is quite obvious that extending a curve beyond the 90 degree point does not sat-

isfy the minimum curvature constraint.2 For this reason our Extension field has zero values above and be-

1. In [22], α=2 is used, and the absolute value is redundant.
2. Note that our proof holds only in the 0 to 900 interval. It is sufficient to give the elliptic continuation

as a counter-example to show that the behavior beyond the 90 degree point is different.

Unit edge

Point in space
Osculating
circle

Figure 7 Assigning a direction for every point in space

Chosen orientation
tangent to circle

at origin

C
sd

dθ α
ds

ϒ
∫= α 1>,
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promise between extension fields is also central to the approach, and will be presented in a more formal

way later.

It is not reasonable to expect that extension curves from two different extension fields will align

throughout their extent. It is more likely that such extensions align locally in many places. For that reason,

the extension field will consist of local best candidates for extensions. In the next section, we define the

exact shape and usage of the Extension Field.

3 The Extension Field: design and implementation
Definition: An Extension Field is a maximum likelihood directional vector field describing the

contribution of a single unit-length edge element to its neighborhood in terms of length and direction.

In other words, it votes on the preferred direction and the likelihood of existence of every point in

space to share a curve with the original segment. The field is of infinite extent, although, in practice, it

disappears at a predefined distance from the edge. Figure 6 depicts the Extension Field.

The design of this field needs to account for the shape of the field, the orientation at each site, and

the strength at each site. The first two aspects are quite straightforward, while the last needs more expla-

nation.

3.1 Design of the Extension Field (Orientation and Likelihood)
Shape and Orientation. Since we favor small and constant curvature, the field direction at a giv-

en point in space is chosen to be tangent to the osculating circle passing through the edge segment and

that point, while its strength is proportional to the radius of that circle. Also, the strength decays with the

distance from the origin (the edge segment). The choice of a circular extension agrees with the constraint

of smallest total curvature. We note that Ullman [25] proposed the usage of the a circular connection be-

Figure 6 The basic Extension Field. (a) Direction, and (b) Strength.

(a) (b)

Edge element
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We would thus want to consider all the curves in such a way that the extension is smooth, influ-

enced most by the behavior of close-by points of the curve, but can assume any form. Note that such ex-

tension can be constructed even if the curve is fragmented, and is robust, being the ‘average’ of many

segments.

We go further than that: Rather than having only the best extension, we would like to list all pos-

sible extensions in the order of their likelihood. This suggests the use of some kind of a field (or flow)

emanating from the end-points of a segment. The idea of a field plays a major role in our scheme, as we

will show later.

2.1.3  Best Connection between Two Line Segments

Another instance of over-constraining arises when two subparts of two curves form a natural con-

nection, which would require a fit-then-connect approach to solve a difficult segmentation problem.

The situation occurs whenever a ‘compatibility figure’1 of two close-by segments is computed in

order to decide whether these segments should be grouped together. When determining the compatibility

of two lines we would like to consider for each line its best extension (or extension field, as discussed in

2.1.2) and arrive at some compromise as to the best path between them. In other words, each of the curves

votes (using its field) for a family of curves. If the curves should really be connected then some extension

from curve 1 would align with another extension of curve 2, to form the compromise2. The idea of a com-

1. A measure of ‘agreement’ between two curves, based on the difference of the end-point tangents and
separation. (as used by [5, 14, 15])

2. Which is not necessarily the best continuation of any of the existing curves, or even a connection
between the given end-points.

Figure 4 What is the shape of the most ‘natural’ extension to a given curve?

more naturalnot likely

cannot be inferred from
data

Figure 5 What is the best path between these two curves?

compromise
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2.1 Rationale for the Extension Field
In order to define saliency qualitatively, we start by writing down the major constraints which gov-

ern our mechanisms of saliency.

2.1.1  The perceptual constraints
Our underlying goal is to keep the interpretation as simple as possible (in the 'Gestalt' sense). This

translates into four major constraints:

1) Co-curvilinearity - In the lack of other cues, smooth continuation (co-curvilinearity) is the only
interpretation.

2) Constancy of curvature - We tend to extend a curve of some constant curvature with the same
curvature, keeping the interpretation as simple and regular as possible, yet consistent with our
sensory information. This principle is called Prägnanz by Gestaltists (see Figure 3).

3)  Favoring low curvatures over large ones - Humans seem to connect fragmented line segments in a
way that the increase in total curvature is minimum (see Ullman and Sha’ashua[22]).

4) Proximity - Closer segments influence each other more than distant ones.

The above mentioned constraints operate on curves (with the possible exception of 4), whereas our

input consists of first order approximations of these curves. We therefore need to both infer curves, and

connect them. In our scheme, this circular problem is overcome by solving these two problems concur-

rently. This way, we avoid making hard choices as to the initial curves, which would then over-constrain

the possible extensions.

2.1.2  Extending a Curve
One example of such a strong constraint is in the use of the tangent to the end-point of a curve.

Given a line segment we ask the question: What is the shape of the most ‘natural’ extension, based on the

mentioned constraints?

Many approaches in the past (e.g. [5,14]) used the tangent of the end-point to determine the best

extension. This approach cannot always work properly for three reasons:

1) The tangent is very sensitive to noise and may introduce large errors.

2) The end-point may not be determined uniquely if the curve in question is fragmented.

3) The extension can only be a straight line (first order), thus not taking into consideration the global
shape of the curve.

(a) (b) (c) (d)

Figure 3 An obscured figure (a) triggers the perception of simple shapes (b), instead of the
more complex (c) and (d). (From [20])
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In our method, every site (pixel or other cell) collects votes from each segment in the image. These

votes contain orientation and strength information preferred by the voting segment. A measure of ‘agree-

ment among votes’ (in terms of orientation) is computed, and sites which have high agreement values are

considered salient. In more technical terms, a vector field1 is generated by each segment, and a function

over the whole space determines points of saliency. A subsequent step links areas of high saliency to pro-

duce a description in terms of curves and junctions.

Our voting scheme is somewhat related to the Hough transform approach [11], but can detect

shapes defined by their properties (smoothness etc.) rather than by their exact shape (lines, circles, etc.).

A study of the relations between our scheme and the Hough Transform is given in the section “Compar-

ison With the Hough Transform” on page 25

The process is likely to produce features more similar to what we expect, both in terms of saliency

and connectivity. Also, since noise is not likely to produce high ‘agreement’ values, it becomes attenuated.

We believe that the use of a non-linear global voting scheme is fundamentally different from the

many local techniques reported before. Such a non-linear global approach is difficult to decompose into

an iterative local scheme.

Our system can take as input a set of oriented features, as produced by a typical edge-detector, as

well as features with an associated directional uncertainty, and even edges with no associated orientation

(dot formations). The output of our system is a set of oriented features, with an associated strength reflect-

ing its saliency, and an uncertainty of orientation.

It is convenient to represent each site (input or output) by an ellipse, whose major axis points in the

direction of the edgel direction, whose length is proportional to the strength, and whose minor axis reflects

the associated uncertainty. This is illustrated in figure 2. An isotropic feature (such as a dot) would thus

be represented by a circle.

1. Which we later call the Extension Field.

Figure 2 Input and output site model. Every site is associated with a preferred direction,
strength and eccentricity (or uncertainty).

Preferred
direction

Another possible
direction with less likelihood (shorter)
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2 Overview of Our Approach

As was presented before, the physical evidence extracted locally from images (e.g. through edge

detectors) is in many cases ambiguous and does not correspond to the expected perception of the image.

It is thus necessary, we believe, to impose global perceptual considerations even during low-level process-

ing. These constraints need to be generic, as they should embody expected properties of all scenes.

We briefly explain below what is computed, how it is computed, and give a rationale for the ap-

proach.

In signal edge-detection, we extract edges and assign position, orientation, and strength based on

local physical measurements. Unfortunately, the relationship between the strength of the perceived edges

and the strength of the measured signal is not straightforward. We therefore propose to generate a different

measure of strength, which we call saliency, based on more global expected properties of the observed

scene, such as co-curvilinearity. This idea has been tried in the past, but is rather difficult to implement

efficiently, and in a robust way.

Lowe[14]
Ahuja &
Tuceryan

[1]

Dolan &
Weiss[5]

Mohan
&

Nevatia
[16]

Ullman &
Sha’ashua

[22]

Parent-
Zucker

[17]

Heitger
& von der
Heydt [9]

Our scheme

Operator Local Local Local Local Extensible
(local)

local Global Global

Primitives Straight
lines

Dots Straights curves straight
lines and
curves

curves endpoints
and T-
junctions

dots, lines
and curves

Control One pass Iterative Iterative Relax-
ation Pro-
gressive

Parallel-pro-
gressive (it-
erative)

relaxation one pass One-pass
convolution

Noise im-
munity

Not clear Good Good Good Moderate Good Not han-
dled

Very good

Scale One One Hierarchy One One One One One

Parameters Yes No Yes Yes Yes Yes Yes None

Pre-atten-
tive (Do-
main free)

Yes Yes Yes No (yes) Yes Yes Yes Yes

Special fea-
ture

First Dot cluster-
ing. parame-
ter free

Multi-res-
olution

Symme-
try, high-
level con.

Saliency
map

local ker-
nels

Saliency
map, unified,
parameter-
free

Sensitive
computa-
tions

Yes No Yes? Yes Yes Yes No None

Table 1: Comparison of different grouping techniques
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Lowe [14] discusses the Gestalt notions of collinearity, co-curvilinearity and simplicity as important

in perceptual grouping. Ahuja and Tuceryan [1] suggest methods for clustering and grouping sets of points

having an underlying perceptual pattern.

Dolan and Weiss [5] demonstrate a hierarchical approach to grouping relying on compatibility mea-

sures such as proximity and good continuation. Mohan and Nevatia [15] assume a-priori knowledge of the

contents of the scene (i.e. aerial images). A model of the desired features is then defined, and groupings

are performed according to that model. In a later work [16], groupings based explicitly on symmetries are

suggested, but the first connectivity steps are performed locally.

Ullman [25] has suggested that a curve joining two edge fragments is formed by the pair of circular

arcs which minimize the integral of curvature squared. He also proposed a network model, but no results

were shown. Clearly, elliptical curves cannot be constructed by joining only a pair of circular arcs. Also,

this scheme cannot be easily generalized to a set of 3 or more edge fragments, and does not allow for out-

liers. In a sense, what we propose next is an extension of the same idea where a curve is formed (and/or

approximated) by joining an unlimited number of (possibly) short circular arcs.

Parent and Zucker [17] describe a relaxation labeling where local kernels are used to estimate tan-

gent and curvature. These kernels use support functions based on co-circularity. Somewhat similar kernels

are used in our scheme, but applied in a different way.

Heitger and von der Heydt [9] make use of anisotropic selective filters which are combined pair-

wise to recover occluding contours. The scheme takes as input endpoints and T-junctions, and results in

the most natural connections of those. It is based on neurophysiological observations, but does not handle

noise, and assumes that endpoints and T-junctions are available by some other means. The authors present

convincing results on real images.

Sha’ashua and Ullman [22] suggest the use of a saliency measure to guide the grouping process,

and to eliminate erroneous features in the image. The scheme prefers long curves with low total curvature,

and does so by using an incremental optimization scheme (similar to dynamic programming).

Others ([30,18]) have also looked at similar problems.

The main features of some of the more important works are summarized in table 1, and contrasted

with our scheme. It is interesting to note that virtually all proposed algorithms use local operators to infer

more global structures. Also note that many of the schemes are iterative, relying on one relaxation (or

minimization) scheme or another, and are similar in that sense. The main differences are in the choice of

the compatibility measures or the function to minimize.
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tension Field. We follow by a comparison with the classical Hough transform and conclude by offering a

set of other fields for special purposes.

1.1 Perceptual Grouping

Perceptual Grouping refers to a class of visual phenomena where clustering of physically non-con-

nected elements in the image occurs. This task is equivalent to a figure-ground discrimination when pat-

terns are embedded in noise. Figure 1 depicts examples of perceptual groupings which are of interest to

us, and are considered to be the result of a pre-attentive process. Such processes are known to take several

hundreds of milliseconds (200-500 ms) to complete, and are thus not likely to utilize any high-level rea-

soning mechanism [3].

The circle in the middle of figure 1(a) is easily distinguishable from its noisy background. Further-

more, we tend to fill the gaps, or more precisely, we are able to complete the circle mentally. The same

holds for the geometrical patterns in 1(b). Figure 1(c) depicts a dot formation. Again, grouping of certain

dots is possible, and salient curves are noticeable. A more striking example of illusory contours is found

in the Kanizsa illusion [12] shown in Figure 1(d). Here we perceive edges which have no physical support

whatsoever in the original signal.

The Gestalt psychologists (e.g. [28,3]) were among the first to address the issues of pre-attentive

perception. Many ‘laws of grouping’ were formulated, but none put in any algorithmic language. Further-

more, the rules tend to supply conflicting explanations to many stimuli. This makes the computational im-

plementation of such laws nontrivial. With input in the form of edges, the laws most relevant to our work

relate to proximity and good continuation.

The same constraints can be derived using different arguments. For instance, Lowe [14] uses a

probabilistic framework to derive similar constraints. We now briefly review some of the related literature,

and provide a comparison table.

Figure 1 (a) & (b) Two instances of perceptual arrangements. (c) A dot formation. (d) The
Kanizsa Square.

(c) (d)(b)(a)
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1 Introduction
Computer vision can greatly benefit from perceptual grouping. Perceptual Grouping can be classi-

fied as a mid-level process directed toward closing the gap between what is produced by state-of-the-art

low-level algorithms (such as edge detectors) and what is desired as input to high level algorithms (perfect

contours, no noise, no fragmentation, etc.). Many researchers resort to using synthetic data as their input

because of this weak link.

Determining groups in a given set of points or edgels can be a very expensive computational task.

Not only does one need to consider all possible sub-sets for grouping (a complexity of O(2#_of_points), but

the actual measurement of compatibility of a sub-set is not well defined. Methods for edge labeling (such

as [4,27]) assume perfect segmentation and connectivity, and define constraints which are only valid under

these assumptions. These methods cannot work on ‘real’ edges. Other methods, like shape from contour

[26], and [21, 24], also rely heavily on the connectedness of the edges, and can benefit from the removal

of noise (erroneous segments). Pattern recognition schemes (such as[23]) rely on (at least) partial connect-

edness of the edges, and cannot function if the edge image is very fragmented. Also, the amount of noise

is directly proportional to the computational cost of finding ‘real’ objects in a scene. In addition, the com-

plexity of most pattern recognition schemes is directly proportional to the number of distinct primitives

in the input.

Using global perceptual considerations when attempting to connect fragmented edge images can al-

leviate many of the above problems, as we show here.

We introduce a general algorithm capable of highlighting features due to co-curvilinearity and prox-

imity. We suggest the Extension Field as a ‘voting pattern’ representing a large family of smooth curves,

all at once. We explore the properties of the Extension Field, and suggest specialized fields that can be

used within the same computational paradigm to reveal perceptual phenomena such as endpoint forma-

tions and straight lines. Experimental results with different types of distortion applied to the input are also

presented. We start by explaining the original algorithm, then describe some of the properties of the Ex-


